Repeat Applications in College Admissions

Yeon-Koo Che¹, Jinwoo Kim² and Youngwoo Koh³

KER Conference

today

- Matching markets: medical residency match, public school allocations, labor markets, college admissions.
- Many markets involve "repeat applicants" and matching is not a static game.
 - Reentering job markets for professionals.
 - Repeat taking civil service exams in Japan, Korea, US.
 - Reapplying (or transferring) colleges in China, France, Japan, Korea, Turkey, US

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Matching markets: medical residency match, public school allocations, labor markets, college admissions.
- Many markets involve "repeat applicants" and matching is not a static game.
 - Reentering job markets for professionals.
 - Repeat taking civil service exams in Japan, Korea, US.
 - Reapplying (or transferring) colleges in China, France, Japan, Korea, Turkey, US

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Economic implications of repeat applications and their welfare consequences are not well understood, however.
- In this paper, we will
 - model repeat applications problems;
 - analyze equilibrium properties and welfare implications; and

- draw some policy implications
- in the context of college admissions.

Repeat applications in college admissions

- Repeat applicants:
 - Korea: 23% of 3,057,983 applicants for four-year colleges were repeat applicants in 2016.
 - France: more than two years in CPGE ("prépa school") for Grandes Ecoles
 - US: 18% of 119,408 applicants in UCLA; 3% of 31,671 applicants in Duke are transfer students in 2016.
- It is costly to repeat apply.
 - Additional preparation, opportunity cost of staying behind a year
 - $\bullet\,$ Korea: private tutoring institution \$750 \sim \$2,800 per month.
 - US: transfer students can "lose" credits when they move to the new school and typically attend for an extra year or more.

Repeat applications in college admissions

- Repeat applicants:
 - Korea: 23% of 3,057,983 applicants for four-year colleges were repeat applicants in 2016.
 - France: more than two years in CPGE ("prépa school") for Grandes Ecoles
 - US: 18% of 119,408 applicants in UCLA; 3% of 31,671 applicants in Duke are transfer students in 2016.
- It is costly to repeat apply.
 - Additional preparation, opportunity cost of staying behind a year
 - Korea: private tutoring institution \$750 \sim \$2,800 per month.
 - US: transfer students can "lose" credits when they move to the new school and typically attend for an extra year or more.

- Sorting effect:
 - Students self-select whether to repeat apply.
 - High type students are more likely to repeat apply, and they pursue better college.
 - Repeat applications enable better matching.
- Congestion effect:
 - College admission is a situation in which individuals compete for fixed resources (i.e., "good" colleges).
 - Repeat application enlarges a pool of applicants at any given time and thereby increases competition, which causes future students to repeat apply, and so on...
 - Reapplicants do not take into account for (negative) externality of taking away seats from others, which causes repeat application to be excessive.

- Sorting effect:
 - Students self-select whether to repeat apply.
 - High type students are more likely to repeat apply, and they pursue better college.
 - Repeat applications enable better matching.
- Congestion effect:
 - College admission is a situation in which individuals compete for fixed resources (i.e., "good" colleges).
 - Repeat application enlarges a pool of applicants at any given time and thereby increases competition, which causes future students to repeat apply, and so on...
 - Reapplicants do not take into account for (negative) externality of taking away seats from others, which causes repeat application to be excessive.

- Avery and Levin (2010), Lee (2009), Che and Koh (2016)
 - Colleges' admission strategies.
- Chade and Smith (2006), Chade, Lewis and Smith (2011)
 - Students' application decisions with application cost.
- Frisancho, Krishna, Lychagin and Yavas (2016), Krishna, Lychagin and Frisancho (2018)
 - Retaking university entrance exam/repeat applications in Turkey.
- Vigdor and Clotfelter (2003), Törnkvist and Henriksson (2004)
 - Retaking SAT and Swedish-SAT.

Model

- A unit mass of students with type (ability) θ ∈ [0, 1], according to a distribution G(·).
 - Each of type-heta student draws score $s \in [0,1]$ from $F(\cdot| heta)$
 - The density $f(\cdot|\theta)$ satisfies MLRP, i.e., for s < s' and $\theta < \theta'$,

$$\frac{f(s'|\theta')}{f(s|\theta')} > \frac{f(s'|\theta)}{f(s|\theta)}.$$

- Two colleges, 1 and 2, each with capacity κ_i and quality q_i .
 - Type- θ student obtains payoff $q_i \theta$ from attending college *i*.
 - $q_1 > q_2 > 0$, $\kappa_1 < 1$ and κ_2 is sufficiently large.
 - If a student doesn't attend 1 or 2, he goes to the "null" college, ø, and gets zero payoff.

Model

- A unit mass of students with type (ability) θ ∈ [0, 1], according to a distribution G(·).
 - Each of type-heta student draws score $s \in [0,1]$ from $F(\cdot| heta)$
 - The density $f(\cdot|\theta)$ satisfies MLRP, i.e., for s < s' and $\theta < \theta'$,

$$rac{f(s'| heta')}{f(s| heta')} > rac{f(s'| heta)}{f(s| heta)}.$$

- Two colleges, 1 and 2, each with capacity κ_i and quality q_i .
 - Type- θ student obtains payoff $q_i \theta$ from attending college *i*.
 - $q_1 > q_2 > 0$, $\kappa_1 < 1$ and κ_2 is sufficiently large.
 - If a student doesn't attend 1 or 2, he goes to the "null" college, ø, and gets zero payoff.

- Students can apply to at most one college.
 - Limiting applications is not unusual (Che and Koh, 2016).
 - E.g. Korea (at most one in each group), Japan (at most two public universities)
 - Later, we will study multiple applications.
- Timing (in each year)
 - Students observe their types and decide which college they apply to (with no cost for application).
 - Scores are observed and colleges admit students whose scores are above some cutoffs.
 - Students who fail to get into a (desired) college can take another year to repeat apply.
 - (a) When reapplying, type θ student draws another score from $F(\cdot|\theta)$ and pays reapplication cost c.

- Students can apply to at most one college.
 - Limiting applications is not unusual (Che and Koh, 2016).
 - E.g. Korea (at most one in each group), Japan (at most two public universities)
 - Later, we will study multiple applications.
- Timing (in each year)
 - Students observe their types and decide which college they apply to (with no cost for application).
 - Scores are observed and colleges admit students whose scores are above some cutoffs.
 - Students who fail to get into a (desired) college can take another year to repeat apply.
 - When reapplying, type θ student draws another score from $F(\cdot|\theta)$ and pays reapplication cost c.

Focus on stationary equilibrium

- College *i* employs the same cutoff \hat{s}_i and admits students with $s \geq \hat{s}_i$ for each year. $(\hat{s}_1 > 0 = \hat{s}_2)$
- The set of types (repeat) applying to each college remains the same in each year.
- Students' payoffs for a given $\hat{s} = (\hat{s}_1, \hat{s}_2)$,
 - $u_i(\theta; \hat{s}) := q_i \theta (1 F(\hat{s}_i | \theta))$ is the static payoff from applying to *i*.
 - u_{ij}(θ; ŝ) := u_i(θ) + F(ŝ_i|θ)(u_j(θ) − c) is the payoff from applying to i and reapplying to j.
 - If j = Ø, u_{ij}(θ; ŝ) ≡ u_i(θ; ŝ) is the payoff from applying to i and do not reapply.

A D N A 目 N A E N A E N A B N A C N

- Focus on stationary equilibrium
 - College *i* employs the same cutoff \hat{s}_i and admits students with $s \geq \hat{s}_i$ for each year. $(\hat{s}_1 > 0 = \hat{s}_2)$
 - The set of types (repeat) applying to each college remains the same in each year.
- Students' payoffs for a given $\hat{s} = (\hat{s}_1, \hat{s}_2)$,
 - $u_i(\theta; \hat{s}) := q_i \theta (1 F(\hat{s}_i | \theta))$ is the static payoff from applying to *i*.
 - $u_{ij}(\theta; \hat{s}) := u_i(\theta) + F(\hat{s}_i|\theta)(u_j(\theta) c)$ is the payoff from applying to *i* and reapplying to *j*.
 - If j = Ø, u_{ij}(θ; ŝ) ≡ u_i(θ; ŝ) is the payoff from applying to i and do not reapply.

• A stationary equilibrium consists of \hat{s} and α such that

(i) For all $\theta \in [0,1]$,

$$\alpha(\theta) = (i,j) \in \argmax_{k,\ell \in \{1,2\} \times \{1,2,\emptyset\}} u_{k\ell}(\theta;\hat{s}).$$

(ii) For each school *i*, $m_i \leq \kappa_i$ (with equality if $\hat{s}_i > 0$).

• Mass of students enrolling in college *i*,

$$m_i = \int_{\alpha(\theta)=(i,j)} (1 - F(\hat{s}_i | \theta)) dG(\theta) + \sum_{j \in \{1,2\}} \int_{\alpha(\theta)=(j,i)} F(\hat{s}_j | \theta) (1 - F(\hat{s}_i | \theta)) dG(\theta)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

(Unique) Equilibrium without reapplications: $c \geq \overline{c}$

• There is \overline{c} such that for $c > \overline{c}$, $u_i(\theta) < c$ for all θ , where i = 1, 2.

- No reapplications.
- $\hat{\theta}$ is indifferent between 1 and 2 in terms of static payoffs.
- High types take risk to enjoy higher q.

(Unique) Equilibrium without reapplications: $c \geq \overline{c}$

• There is \overline{c} such that for $c > \overline{c}$, $u_i(\theta) < c$ for all θ , where i = 1, 2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- No reapplications.
- $\hat{\theta}$ is indifferent between 1 and 2 in terms of static payoffs.
- High types take risk to enjoy higher q.

Equilibrium with reapplications-Case 1: $c \in [\hat{c}, \overline{c})$

$$\alpha(\theta) = \begin{cases} (1,1) & \text{for } \theta \in [\hat{\theta}_R, 1] \\ (1, \emptyset) & \text{for } \theta \in [\hat{\theta}, \hat{\theta}_R) \\ (2, \emptyset) & \text{for } \theta \in [0, \hat{\theta}) \end{cases}$$

- $\hat{\theta}_R$ is indifferent between reapplying and not.
- $u_{11}(\theta) = u_1(\theta) + F(\hat{s}_1|\theta)(u_1(\theta) c) > u_1(\theta)$ for $\theta > \hat{\theta}_R$.
- High types have incentive to reapply to 1.

Equilibrium with reapplications-Case 1: $c \in [\hat{c}, \overline{c})$

$$\alpha(\theta) = \begin{cases} (1,1) & \text{for } \theta \in [\hat{\theta}_R, 1] \\ (1, \emptyset) & \text{for } \theta \in [\hat{\theta}, \hat{\theta}_R] \\ (2, \emptyset) & \text{for } \theta \in [0, \hat{\theta}) \end{cases}$$

- $\hat{\theta}_R$ is indifferent between reapplying and not.
- $u_{11}(\theta) = u_1(\theta) + F(\hat{s}_1|\theta)(u_1(\theta) c) > u_1(\theta)$ for $\theta > \hat{\theta}_R$.
- High types have incentive to reapply to 1.

Equilibrium with reapplications-Case 2: $c \in [0, \hat{c})$

$$\alpha(\theta) = \begin{cases} (1,1) & \text{for } \theta \in [\hat{\theta},1] \\ (1,2) & \text{for } \theta \in [\hat{\theta}_R,\hat{\theta}) \\ (2,\emptyset) & \text{for } \theta \in [0,\hat{\theta}_R) \end{cases}$$

• $u_{12}(\theta) = u_1(\theta) + F(\hat{s}_1|\theta)(u_2(\theta) - c) > u_2(\theta)$ iff $\theta > \hat{\theta}_R$.

- Except for low types $(E_{2\phi})$, students have incentive to reapply.
- Middle types (E_{12}) consider it worthwhile to take a chance on 1.

• High types (E_{11}) keep pursuing college 1.

Equilibrium with reapplications-Case 2: $c \in [0, \hat{c})$

$$\alpha(\theta) = \begin{cases} (1,1) & \text{for } \theta \in [\hat{\theta},1] \\ (1,2) & \text{for } \theta \in [\hat{\theta}_R,\hat{\theta}) \\ (2,\emptyset) & \text{for } \theta \in [0,\hat{\theta}_R) \end{cases}$$

• $u_{12}(\theta) = u_1(\theta) + F(\hat{s}_1|\theta)(u_2(\theta) - c) > u_2(\theta)$ iff $\theta > \hat{\theta}_R$.

- Except for low types $(E_{2\phi})$, students have incentive to reapply.
- Middle types (E_{12}) consider it worthwhile to take a chance on 1.

• High types (E_{11}) keep pursuing college 1.

Existence of Equilibrium

- Characterization so far based on a fixed $\hat{s} = (\hat{s}_1, \hat{s}_2)$.
- Associate the equilibrium with a fixed point in the cutoff score under a map Φ.
 - Fix any cutoff scores $\hat{s} = (\hat{s}_1, \hat{s}_2)$.
 - Pin down $\alpha(\theta)$ as constructed above.
 - This in turn determines the mass of applicants to each college at any given score profile s = (s₁, s₂).

$$egin{aligned} m_i(s;\hat{s}) &= \int_{\{ heta|lpha(heta;\hat{s})=(i,j)\}} (1-F(s_i| heta)) dG(heta) \ &+ \sum_{j\in\{1,2\}} \int_{\{ heta|lpha(heta;\hat{s})=(j,i)\}} F(s_j| heta) (1-F(s_i| heta)) dG(heta) \end{aligned}$$

• Equating them to capacities yields new cutoff scores $\tilde{s} = (\tilde{s}_1, \tilde{s}_2)$.

- The map Φ from \hat{s} to \tilde{s} admits a fixed point by Brouwer.
 - Show that \hat{s} lies within a compact set
 - Show that Φ is continuous.
- Each step of the proof requires subtle care.
 - Need to rule out the possibility that mass of students are indifferent between any two application strategies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Comparative Statics

• Equilibrium cutoffs:

Parameters: $q_1 = 10$, $q_2 = 7$, $\kappa_1 = 0.4$, $F(s|\theta) = s^{\theta+1}$, $G(\theta) = \theta$

- As it becomes more costly to repeat apply $(c \uparrow)$,
 - Less students reapply $(\hat{\theta}_R \uparrow) \Rightarrow$ make college 1 less competitive $(\hat{s}_1 \downarrow) \Rightarrow$ lowers the lowest applicant type $(\hat{\theta} \uparrow)$.

Welfare Analysis

Social welfare

$$SW := Q - C = (q_1v_1 + q_2v_2) - c m_R$$

- $Q := q_1v_1 + q_2v_2$ captures "matching quality," where q_iv_i is the value generated from matching students with college *i*.
 - For instance, if $c \in [\hat{c}, \overline{c})$,

$$v_{1} = \int_{\hat{\theta}}^{1} \theta \big(1 - F(\hat{s}_{1}|\theta) \big) dG(\theta) + \int_{\hat{\theta}_{R}}^{1} \theta F(\hat{s}_{1}|\theta) \big(1 - F(\hat{s}_{1}|\theta) \big) dG(\theta)$$

• $C := c m_R$ is the total cost of repeat applications, where m_R is the mass of reapplicants, where

$$m_R := \int_{\hat{ heta}_R}^1 F(\hat{s}_1| heta) dG(heta)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• m_R is decreasing in c ($\hat{\theta}_R$ is increasing and \hat{s}_1 is decreasing in c).

Sorting effect

- Q is maximized when an interior fraction of students reapplies.
- For sorting, it is not good for everybody to repeat apply or for nobody to repeat apply.

(日) (四) (日) (日) (日)

- When $c = \overline{c} \downarrow c'$ $E_{2\emptyset}$ $E_{1\emptyset}$ $\widehat{\theta}'$ $E_{1\emptyset}$ $\widehat{\theta}'_{R} E_{11}'^{1}$
 - $[\hat{\theta}'_R, 1]$ replace lower types.
 - No higher types negatively affected by increased score.
 - Q is increasing as $c = \overline{c} \downarrow c'$.

- $[0, \hat{\theta}'_R]$ are replaced by higher types.
- All above types are positively affected by $\hat{s}'_1 < \hat{s}_1$.
- Q is decreasing as $c = 0 \uparrow c'$.

- When $c = \overline{c} \downarrow c'$ $E_{2\emptyset}$ $E_{1\emptyset}$ $\widehat{\theta}'$ $E_{1\emptyset}$ $\widehat{\theta}'_{R} E_{11}'^{1}$
 - $[\hat{\theta}'_R, 1]$ replace lower types.
 - No higher types negatively affected by increased score.
 - Q is increasing as $c = \overline{c} \downarrow c'$.

• When
$$c = 0 \uparrow c'$$

- $[0, \hat{\theta}'_R]$ are replaced by higher types.
- All above types are positively affected by $\hat{s}'_1 < \hat{s}_1$.
- Q is decreasing as $c = 0 \uparrow c'$.

- Ignoring the sorting effect, college admissions is like a "zero sum game" (when you win college 1, somebody else loses).
- Excessive reapplications
 - Private benefit from repeat application exceeds social benefit
 ⇒ Excessive reapplication at the individual level.

Positive feedback

• More people in one cohort repeat apply \Rightarrow college 1 becomes more selective, $\hat{s}_1 \uparrow \Rightarrow$ induces even more people in the next cohort to repeat apply $\Rightarrow \ldots$

• Negative externalities are amplified by the chain reaction.

- Ignoring the sorting effect, college admissions is like a "zero sum game" (when you win college 1, somebody else loses).
- Excessive reapplications
 - Private benefit from repeat application exceeds social benefit

 \Rightarrow Excessive reapplication at the individual level.

- Positive feedback
 - More people in one cohort repeat apply \Rightarrow college 1 becomes more selective, $\hat{s}_1 \uparrow \Rightarrow$ induces even more people in the next cohort to repeat apply $\Rightarrow \ldots$
 - Negative externalities are amplified by the chain reaction.

Congestion effect: positive feedback

- Consider two costs c > c', and reduce c to c' permanently.
 - E.g. online tutoring, less weights on high school GPA, and so on..
 - $(\hat{s}_1^*, \hat{\theta}^*, \hat{\theta}_R^*)$ and $(\hat{s}_1^{*'}, \hat{\theta}^{*'}, \hat{\theta}_R^{*'})$: steady state cutoffs at c and c'.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

• $c \downarrow c'$ at t = 0

⇒ more students repeat apply $(\hat{\theta}_R^{(0)} < \hat{\theta}_R^* \text{ and } m_R^{(0)} > m_R)$ ⇒ college 1 becomes more selective $(\hat{s}_1^{(1)} \uparrow)$

 \Rightarrow even more students are rejected and forced to reapply $(m_R^{(1)} > m_R^{(0)})$, although repeat application becomes less attractive $(\hat{\theta}_R^{(1)} > \hat{\theta}_R^{(0)})$

 $\Rightarrow \cdots$ $\Rightarrow \hat{s}_{1}^{(t)} \uparrow \hat{s}_{1}^{*'}, \hat{\theta}_{D}^{(t)} \uparrow \hat{\theta}_{D}^{*'}, m_{D}^{(t)} \uparrow m_{D}^{*'} \text{ as } t \to \infty.$

Policy Implication: Imposing tax

- Tax on repeat application: $c + \tau$.
- At $\tau = 0$, raising tax raises $\hat{\theta}_R$ and lowers \hat{s}_1 .
- If the tax rate is slight,
 - private welfare loss is second order (because marginal types are making optimal decisions)
 - but the benefit from reducing negative externalities is first order.

人口 医水黄 医水黄 医水黄素 化甘油

- Excessive reapplication comes from that students want to enroll in 1. Reducing quality gap, q₁ - q₂, mitigates such desires.
- Suppose q_i changes by Δq_i , i = 1, 2, such that

$$\Delta q_1 \leq 0 < \Delta q_2$$
 and $\Delta q_2 \geq -rac{v_1}{v_2}\Delta q_1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- This makes college 1 less attractive, alleviating the congestion problem. Hence, SW increases.
- NB. $\Delta q_1 < 0 = \Delta q_2$ doesn't work since this lowers matching quality, while $\Delta q_1 = 0 < \Delta q_2$ works well.

Multiple Applications

• Students can apply to both colleges in the baseline model.

• Since there is no application cost, it is a weak dominant strategy for students to apply to both colleges.

• The equilibrium allocation is stable.

- Students are always admitted by college 2 because κ_2 is large.
- There is a cutoff score š₁ such that students with s ≥ š₁ are admitted by college 1.
- Students with score above \check{s}_1 attend college 1 and the remaining students attend college 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• No justified envy.

- Students can apply to both colleges in the baseline model.
 - Since there is no application cost, it is a weak dominant strategy for students to apply to both colleges.
- The equilibrium allocation is stable.
 - Students are always admitted by college 2 because κ_2 is large.
 - There is a cutoff score š₁ such that students with s ≥ š₁ are admitted by college 1.
 - Students with score above \check{s}_1 attend college 1 and the remaining students attend college 2.

• No justified envy.

• Each type θ reapplies if and only if

$$u_{\mathcal{M}}(heta) := q_1 heta ig(1 - \mathcal{F}(\check{\mathtt{s}}_1| heta)ig) + q_2 heta \mathcal{F}(\check{\mathtt{s}}_1| heta) - c > q_2 heta$$

- $u_M(\theta)$ is the expected payoff from reapplication.
- $u_2(\theta) = q_2 \theta$ is the current payoff.
- There exists $\check{\theta}_R$ such that $u_M(\theta) > q_2\theta$ if and only if $\theta > \check{\theta}_R$.

Welfare and policy implications

- Both sorting effect and congestion effect.
- The same policy implications as before.

• Each type θ reapplies if and only if

$$u_{\mathcal{M}}(heta) := q_1 hetaig(1 - \mathcal{F}(\check{\mathtt{s}}_1| heta)ig) + q_2 heta \mathcal{F}(\check{\mathtt{s}}_1| heta) - c > q_2 heta$$

- $u_M(\theta)$ is the expected payoff from reapplication.
- $u_2(\theta) = q_2 \theta$ is the current payoff.
- There exists $\check{\theta}_R$ such that $u_M(\theta) > q_2\theta$ if and only if $\theta > \check{\theta}_R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Welfare and policy implications
 - Both sorting effect and congestion effect.
 - The same policy implications as before.

Observable score

- Consider the baseline model with single application regime.
- Suppose that students observe their scores before applying to colleges and make reapplication decisions before knowing their reapplication scores.
- Transfers
 - Students try to transfer from college 2 to college 1 with cost c.
 - They can go back to college 2 if they fail to transfer to college 1.

Conclusion

• First theoretical work that analyzes repeat applications in the matching literature.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Provide a tractable framework for analyzing
 - How students make (re)application decisions.
 - Welfare consequences of repeat applications.
 - Some policy implications.
- Further works
 - Empirical evidence.
 - Learning through repeat applications.
 - Designing admissions standards.